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Abstract

Thomas Keener
B.S., Appalachian State University
M.A., Appalachian State University

Chairperson: Holly P. Hirst

In this paper, I analyzed graduation rates of a large, comprehensive university in the

southeast United States using Markov chains. This analysis was performed by applying

Markov chains to different populations at the university including entering freshmen, sopho-

more transfers, and junior transfers. This was done to determine differences between the

groups’ long term behavior. Entering freshmen and sophomore transfers’ progression were

also analyzed within each of the individual colleges at the university. Some prescriptions

based on the analysis include: increasing the freshman retention rate and encouraging

sophomores to change majors rather than leave the university. Additional post-analysis

recommendations and discussion are included, as well as limitations of the analysis.
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Chapter 1: Introduction to Absorbing Markov Chains

Often in mathematics we assume that systems are random, and we call these stochastic

processes. Though these systems may be random, we can sometimes determine the states in

which an individual in the system, or the system itself, could possibly be in. If we not only

know these states, but the probabilities of the system or individual moving between states,

we can establish a system of linear equations to predict the occupancy of each state at a

given time in the future.

Example 1

Let us examine an example of these processes. A car has broken down on the side of the

highway and been abandoned. There is a 30% chance the car will be removed from the side

of the road each day. Once the car is removed from the highway there is no chance that it

is seen in the same spot again.

In this system, we can determine that there are two possible outcomes at the end of each

day; the car is either removed or the car remains on the side of the road. Thus, the set of

possible outcomes is U = {remains , removed}. To represent these outcomes as variables,

we will let u1 be the state of the car remaining, and u2 be the state of the car being removed.

Then on some given day, t, we can model the state of the car on the next day, t + 1, using

the following equations:

u1(t + 1) = 0.7 u1(t)
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u2(t + 1) = 0.3 u1(t) + 1 u2(t).

Since this is a system of linear equations, we can represent the system as a matrix in

which the current, t, state is represented by the rows and the t + 1 state is represented by

the columns. The first row will represent the probabilities of transitioning from state u1(t)

to u1(t + 1) or u2(t + 1) in the first and second columns respectively. The second row will

represent the probabilities of moving from state u2(t) to u1(t + 1) or u2(t + 1) in the first

and second columns respectively.

Expressing the system in terms of vectors and matrices allows us to see this more clearly.

We can express the states in a vector
−−→
u(t) = [u1(t), u2(t)]. Then the vector

−−−−−→
u(t + 1) can be

expressed as
−−−−−→
u(t + 1) =

−−→
u(t) ·P, where P is the coefficient matrix for the system and can be

seen below.

P =

0.7 0.3

0 1

 .

There are two things to note about this coefficient matrix. First, the rows of the matrix

add to one; this guarantees that no matter which state that a given object is in, it will remain

within the system in the next time step. Second, the matrix is square. This means that

time steps can be iterated repeatedly by raising the matrix above to some positive power

m. Because this matrix shows how the state of the car can transition from day to day, this

matrix is known as a transition matrix.

If we wanted to know the probability of the car getting removed after 100 days, we would

simply multiply P times itself repeatedly 100 times, or alternatively raise the transition

matrix to the m = 100 power. In doing so, we would receive the following matrix:
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P100 =

0 1

0 1

 .

This indicates that after 100 days, the probability of the car being removed, given that

the car is remaining, is 100%. The reason we can deduce this information is because the

probability of a transition from u1 to u2 is P12 = 1. Therefore, given enough time, the car

will be removed from the side of the road.

Now that we know the long-term behavior of this system, we can now expand upon our

previous observations. First, the probability of the car remaining in u2, given that it is

already in u2, is 100%; if the car is removed, it stays removed. When there is no probability

of an object leaving a state it has already entered, then the state is said to be absorbing.

Second, the car is not guaranteed to return to the side of the road. When there is no

guarantee that an object or system can return to a state–in this case u1–that state is said

to be transient.

The method used to model the car example is an example of a Markov chain. Markov

chains are a method of probabilistic modeling used to model Markov Processes, a type of

finite stochastic process in which the future state of a system is entirely contingent on the

preceding state. If the probabilities of transitioning from one state to another in an arbitrary

time step are known, the probabilities can be organized into a matrix known as a Markov

chain. Subsequently, these chains can be used to determine the outcome of systems after

multiple time steps [4].

With the addition of absorbing states, and the ability of an object or system to reach

an absorbing state from a non-absorbing state, Markov chains become absorbing Markov

chains . Given enough time, everything within a system will be absorbed into an absorbing

state, as can be seen within the car example [3]. As a consequence, Markov chains with a

single absorbing state do not provide interesting results, but Markov chains with multiple

absorbing states do. A Markov chain with multiple absorbing states can be seen in the next
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example.

Example 2

A neurology department of a hospital classifies patients under its care as either bedridden

or ambulatory. Data for the past 10 years reveals that over a one-day time period, 20%

of all ambulatory patients are discharged from the hospital, 75% remain ambulatory, and

the remainder require complete bedrest. In contrast, 10% of all bedridden patients become

ambulatory, 80% remain bedridden, and the other 10% die [4].

In this example, there are four states: ambulatory, bedridden, discharged or dead. Allow

row one to be ambulatory, the second row to be bedridden, the third row to be discharged,

and the fourth row to be dead. Also allow the columns to have the same states, but for

the next time step. Then this situation can be modeled with the following transition ma-

trix:

P =



0.75 0.05 0.20 0

0.10 0.80 0 0.10

0 0 1 0

0 0 0 1


Note that the bottom two rows of the matrix, discharged and dead respectively, are

absorbing states, but all other states are transient. If we wish to know the probabilities of

transition for 100 days, we can raise P to the one hundredth power as follows:

P100 =



0 0 0.89 0.11

0 0 0.44 0.56

0 0 1 0

0 0 0 1


.
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Similarly to the car example, we can see that the probability of absorption is still 100%.

However, in this case we can predict the percentage of patients that will die or be discharged.

If we assume 100 days is sufficient time to determine long-term behavior–which we can

because all transient probabilities have gone to zero–we can see that in the long-term 89%

of ambulatory and 44% of bedridden patients are likely to be discharged from the neurology

department. We can also see that 11% of ambulatory patients and 56% of bedridden patients

are expected to die.

With the addition of multiple absorbing states, we become interested in the probability

of being absorbed into each absorbing state. In the two previous examples, this was done

by raising the transition matrices to exceptionally high powers. This method is possible and

fast with the help of computer algorithms. However, there are alternative ways to calculate

the long-term behaviors and expected time steps until absorption to be discussed in later

sections.
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Chapter 2: Mathematical Framework of Absorbing

Markov Chains

Markov Processes

As previously mentioned, Markov Processes are processes in which the future state of a

system is determined only by the immediately preceding state, and a state is a unique

outcome of a trial. If we define chronological time steps t0, t1, . . . , tn and random variables

{Xtn} = {x1, x2, . . . , xn}, this property can be formalized by the following mathematical

statement [4]:

P{Xtn = xn|Xtn−1 = xn−1, . . . , Xt0 = x0} = P{Xtn = xn|Xtn−1 = xn−1}. (1)

We will denote the probability of transitioning from one state to another in one time

step, the one-step transition probability, as follows [4]:

pij = P{Xt = j |Xt−1 = i}, (i, j) = 1, 2, . . . , n, t = 0, 1, . . . , T (2)

pij ≥ 0, (i, j) = 1, 2, . . . , n, (3)

where n is the total number of states.

Additionally, the one-step transition probabilities exhibit the following property for n

possible states [3]:
n∑

j=1

pij = 1 (4)
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For the remainder of this paper, all Markov processes were assumed to be finite (n <∞);

this assumes that we can know all possible outcomes of all possible trials in a system [3].

Organizing Markov Chains

We will hereby denote each of the states in a Markov Process as ui, i = 1, . . . , n; the

probabilities from equation 2 indicate the probability of transitioning from state ui to state

uj in one time step. By arranging these probabilities into a matrix as follows, we can form

a Markov Chain for which P is the transition matrix [3].

P =



p11 p12 . . . p1n

p21 p22 . . . p2n
...

. . .

pn1 pnn


(5)

By applying the property from equation 4, we can note that the sum of the entries for

each row is 1. Let it also be noted that each transition matrix is a square matrix with

dimensions n as seen in the previous examples.

Transition Digraphs and Relevant Graph Theory

One method of building Markov Chains is to view all states as vertices, and all probabilities

as weighted arcs connecting the vertices [3]. Not only is this a visualization method, but it

will allow us to use graph theory to prove important theorems.

For example, we will construct a transition digraph for the following transition ma-

trix.

P =


1
4

1
2

1
4

1
3

0 2
3

1
2

0 1
2

 (6)
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From P , we can see that p12 = 1
2
. This indicates that a system in state one has a

1
2

probability of transitioning to state two in a single time-step. Therefore, if we imagine

states one and two as vertices, we could draw a directed arc from vertex one to vertex two

with weight 1
2
. If we apply this process to each state and each pij within P , we receive the

following transition digraph as seen in Figure 1.

Figure 1: A Transition Digraph for Matrix P [2]

Once a transition digraph is created, a vertex basis and vertex contrabasis can be deter-

mined. A vertex basis of a digraph, D, is the smallest set of points, B, such that any vertex

in D can be reached from some vertex in B. If the direction of all arcs in D are reversed, any

vertex basis in this reversed direction is known as a vertex contrabasis. Formally, a vertex

contrabasis is a minimal set, B′, such that any vertex in D can reach B′ [3].

It must also be noted that we can divide a digraph into its strong components, which are

vertices that can be reached by any other vertex. When we remove components that do not

meet the criteria for a strong component, we will call this condensing [3].

The final required definition from the graph theory is the definition of an ergodic set.

An ergodic set is a closed set in which no proper subset is closed. In a digraph, ergodic sets

are strong components that form a vertex contrabasis in the condensation of D, D∗ [3]. In

the context of a Markov chains, ergodic Markov chains are those that contain states that

objects or systems can return to, but in no certain time period. Sometimes ergodic chains
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are described as recurrent, but aperiodic [4]. If an ergodic set contains only one element,

that element is called an absorbing state. Once this vertex has been reached, there is no way

to leave it [3].

Any vertex that cannot be returned to once it has been left is called a transient vertex,

or a transient state in the language of Markov Chains.

Absorbing Markov Chains and Relevant Calculations

Absorbing Markov chains will be used for the upcoming analysis of graduation rates. These

Markov chains contain at least one absorbing state, and a way to reach an absorbing state

from every non-absorbing state. Once a system has entered an absorbing state, it cannot

leave. In a transition matrix, these states are indicated by the presence of a 1 on the main

diagonal, or more formally, pjj = 1.

We can begin to address the properties of absorbing Markov Chains with the following

theorem and corollary.

Theorem 1. In any finite Markov Chain, independent of starting state, the probability after

t steps that the process is in an ergodic state approaches 1 as t approaches ∞

Corollary. In an absorbing Markov chain, the probability of absorption is 1.

Proof. Let D be an underlying digraph of the transition digraph T . Because ergodic sets

form a vertex contrabasis for the condensation D∗, every transient vertex ui can reach an

ergodic vertex uj. Since there are a finite number of vertices, there is a number r such that

for each transient vertex ui, there is some ergodic vertex uj with d(ui, uj) ≤ r, where d(ui, uj)

is the shortest path from ui to uj in D. Thus, independent of starting state, the probability

of entering an ergodic vertex in at most r steps is a positive probability p.

Therefore, since the process is Markovian, the probability of not reaching an ergodic

vertex in r time steps is 1−p. This implies the probability of not reaching an ergodic vertex

in kr time steps is (1− p)k. Since 0 < p ≤ 1, the probability of not reaching an ergodic state
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approaches 0 as k →∞ [3]. N

Before proceeding with additional theorems, we must declare a canonical form for the

absorbing transition matrices. This is done by partitioning the transition matrix into rec-

ognizable parts, and in this paper, absorbing states will always come last. These parts are

labeled N, A, 0, and I. N denotes the matrix containing probabilities of transitioning from

a non-absorbing state to another non-absorbing state, and the summation of these entries

in each row is less than one. A is the matrix containing probabilities of transitioning from

a non-absorbing state to an absorbing state. 0 is a zero matrix indicating a transition from

absorbing state to non-absorbing states, which is impossible. Lastly, I is an identity matrix

such that pii = 1 and all other pij = 0; this indicates that once an absorbing state has been

entered, the system cannot transition to another state, not even another absorbing state.

For the remainder of this paper, these matrices will be arranged as seen below

P =

N A

0 I


If a matrix is organized according to the canonical form, the following theorem can be

proven.

Theorem 2. For a Markov chain in canonical form, the following statements hold.

Nt = 0 (7)

(I−N)−1exists (8)

(I−N)−1 =
∞∑
s=0

Ns (9)

Proof. Equation (7) is a direct consequence of Theorem 1 as everything will eventually enter
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the absorbing state. To prove Equations (8) and (9) we note the following:

(I−N)(I + N + . . . + Nt−1) = (I−N) + (N−N2) + . . . + (Nt−1 −Nt).

Since this series is telescoping

(I−N)(I + N + . . . + Nt−1) = I−Nt. (10)

Then, as t → ∞, Nt → 0 since all entries are positive numbers less than one or are

otherwise zero. Thus, for sufficiently large t, (I − Nt) 6= 0. Furthermore, if we apply the

fact that det (AB)= det (A) · det(B) and det (I) = 1 to equation (10) we can see that det

(I−N) 6= 0. Thus proving equation (8).

After proving equation (8), we know (I−N)−1 exists. If we multiply each side of equation

(10) with this inverse, we can see

I + N + N2 + . . . + Nt−1 = (I−N)−1(I−Nt). (11)

By letting t → ∞, the right-hand side of equation (11) tends toward (I − N)−1. Thus,

equation (9) has been proven [3]. N

It must now be noted that the matrix (I −N)−1 is called the fundamental matrix and

will hereafter be denoted with the letter Q. Now that we have established how to calculate

the fundamental matrix, we can calculate: expected time in a given state, expected time

before absorption, and probability of absorption. First we will prove the calculation of

expected time in a given state, and then expected time before absorption will be proven by

corollary.

Theorem 3. The expected number of time steps before absorption that an absorbing chain

is in non-absorbing state uj, given that the chain starts in non-absorbing state ui, is given
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by the i, j entry of the fundamental matrix.

Corollary. The expected number of time steps before absorption, given that the process starts

in non-absorbing state ui, is given by the sum on the entries in the ith row of the fundamental

matrix.

Proof. Let eij be the expectation in question. Let c
(s)
j be 1 if the process is in state uj at

time s and 0 otherwise. For any x, let Ei(x) represent the expected value of x given that

the process starts in state ui. Then, given that the ith row corresponds to ui

eij = Ei

(
∞∑
s=0

c
(s)
j

)
=
∞∑
s=0

EiC
(s)
j =

∞∑
s=0

[
(1− p

(s)
ij · 0 + p

(s)
ij · 1)

]
=
∞∑
s=0

p
(s)
ij

Now p
(s)
ij is the i, j entry of N s. Thus, eij is the i, j entry of

∑∞
s=0 Q

s, which is in the

fundamental matrix Q by Theorem 2 [3]. N

Finally, we will prove how to calculate the probability of absorption using the fundamental

matrix.

Theorem 4. In an absorbing Markov chain with canonical transition matrix, let bij rep-

resent the probability of absorption in absorbing state uj given that the process starts in

non-absorbing state ui. If B is the (n−m)×m matrix, then

B = QA

where A represents the probabilities of transitioning from a non-absorbing state to an

absorbing state, and Q is the fundamental matrix.

Proof. Begin by obtaining recursion for bij. Starting in state ui, the chain can either be

absorbed in absorbing state uj, absorbed in another absorbing state uk, such that k 6= j, or go

to a non-absorbing state ur. The respective probabilities will be denoted by pij, pik, pir. From

uj, uk and ur, the probabilities of being absorbed from state uj are 1, 0 and brj respectively.
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Therefore,

bij = pij +
n∑

r=m+1

pirbrj.

Since ui is non-absorbing and uj is absorbing, pij is the i, j entry of the matrix A. Since ui

is non-absorbing and ur is non-absorbing, pir is the i, r entry of the matrix N. Then,

B = A + NB.

By subtracting NB and multiplying Q, we can see

B = (I−N)−1A = QA

Alternatively, we can examine raising matrices to large powers. If we let P be a transition

matrix in canonical form:

P2 =

N A

0 I


N A

0 I

 =

N2 A + NA

0 I

 .

Then,

P3 =

N2 A + NA

0 I


N A

0 I

 =

N3 A + NA + N2A

0 I

 .

By Continuing to raise P to higher powers, we can recognize the pattern and generalize

to the following:

Pk =

Nk
(∑k

i=0 N
i
)
A

0 I


Using Theorem 2, this matrix simplifies to the following:

13



Pk =

0 QA

0 I


Thus, raising matrices to high powers yields the same results as multiplying Q and A

for sufficiently large k [3]. N

These theorems and corollaries will allow us to simplify calculations relevant to absorbing

Markov chains.

Revisiting Example 1

Example 1 had the following transition matrix.

P =

0.7 .3

0 1

 .

In this case, the matrix N is not a matrix but a scalar. Thus the calculation of the

fundamental matrix is:

Q = (1− .7)−1 =
1

0.3
= 3.3̄.

We can now conclude the expected time until absorption is between three and four days.

In addition, we can calculate the absorption probability as seen below:

QA =
1

0.3
· 0.3 = 1.

This calculation has shown that the results that we received from raising the transition

matrix to high powers were true. Both results showed that the car would be removed with

probability 1. Therefore, we can concluded that the car will be removed from the side of the
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highway within 3 to 4 days based on our model.

Revisiting Example 2

Example 2 had the following transition matrix,

P =



0.75 0.05 0.20 0

0.10 0.80 0 0.10

0 0 1 0

0 0 0 1


.

In this case, the matrix N is a 2× 2 matrix containing the probabilities of transitioning

from a non-absorbing state to another non-absorbing state. The calculation of the funda-

mental matrix utilizes an identity matrix the same size as N and appears as follows

Q = (I−N)−1 =

4.4 1.1

2.2 5.6


We can now see that the expected time until absorption for an ambulatory patient is 5.5

days by summation of the first row, and the expected time until absorption for a bedridden

patient is 7.8 days by summation of the second row. This is something that cannot be

calculated from raising the transition matrix to high powers. We can now calculate the

absorption probabilities given that we now have the fundamental matrix. This calculation

can be seen below, where A is the matrix of probabilities for non-absorbing state to absorbing

state transitions.

QA =

.89 .11

.44 .56


In this example, we can see that QA has four absorption probabilities. Each of these

15



is the probability of absorption given that a patient starts in either non-absorbing state.

For example, the 0.89 represents the probability of a patient being discharged given that

the patient entered the neurology unit ambulatory. The 0.11 represents the probability of

an ambulatory patient dying. The 0.44 is the probability of a bedridden patient being dis-

charged, and the 0.56 is the probability of a bedridden patient dying. Note that these are the

exact probabilities we received earlier when we simply raised P to the one hundredth power.

Thus, with the aid of a computer either method of calculating the long-term absorption

probabilities is sufficient.

Now that we have a method of providing probabilities of objects transitioning from any

non-absorbing state to any absorbing state, we can build matrices with many absorbing and

non-absorbing states in order to analyze more complex systems.
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Chapter 3: Analyzing Graduation Rates of New

Students

When a student enters into a university they are assigned an academic standing based on

the number of college classes, and their respective credit hours, taken prior to entry. These

standings, arranged in order of fewest classes taken to most classes taken, are freshmen,

sophomore, junior, and senior. Typically, enrolling students are either freshmen, sophomore

transfers, or junior transfers.

Previous analyses of long-term student behavior in universities have often emphasized

the use of advanced techniques to create accurate Markov chains for entire institutions [1].

I wanted to answer the question, what are the differences in the long-term behaviors for

students entering a university in the three aforementioned groups? To address this problem I

requested data from a large, comprehensive university in the southeastern United States, and

data were provided, in varied format, by the university for each of the three groups requested–

freshmen, sophomore transfers and junior transfers. From the raw data, probabilities of

students transitioning through various academic states were calculated and organized into

absorbing Markov chains. The probabilities of being absorbed into each absorbing state were

then calculated, as well as the expected time until absorption using Theorem 4 and Theorem

3 respectively. A sample of this data is included in Appendix I.

The institution from which I received data considers a student to be counted toward the

graduation rate if they graduate within six academic years of their degree program. So, when

a freshman, sophomore, or junior enters this institution, they have six years to complete their

degree to be considered a graduate for the purposes of this calculation. If a student finishes
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their degree program in seven years, while they do receive a degree, they are not counted as

a graduate when the graduation rate is calculated. Therefore, in the following analysis, at

the end of a student’s sixth year they were either counted for or against the graduation rate

of the institution.

Analysis of Freshmen Cohorts from 2006-2015

The data regarding the academic progression of new freshmen classified students as either

freshmen, sophomores, juniors, or seniors based on the number of credit hours accumulated

over time. Students that left the university during this time period were either considered

graduated or not enrolled, and these states were considered to be absorbing with not en-

rolled being equivalent to not graduated. The Markov chain corresponding to this data set

contained six states. The rows of the transition matrix represent the following states at time

t, from top to bottom:

1. freshman status

2. sophomore status

3. junior status

4. senior status

5. not enrolled

6. graduated

The same order or states describes the representation of each column, from left to right,

at time t + 1. If t represents one academic year, the following transition matrix shows the

transition from t to t + 1:
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P =



.18 .69 0 0 .13 0

0 .21 .69 0 .10 0

0 0 .22 .72 .06 0

0 0 0 .35 .03 0.62

0 0 0 0 1 0

0 0 0 0 0 1


. (12)

Given that this transition matrix was expressed in canonical form, I utilized Theorem 3

to calculate the absorption times for each non-absorbing states. This calculation yields the

following matrix:



4.3

3.6

2.7

1.5


(13)

Based on the calculations above, it is expected that a freshman entering this institution

will either graduate or become not enrolled between the fourth or fifth year. I then utilized

Theorem 4 to calculate the probabilities of being absorbed into each absorbing state given

current, non-absorbing state. This calculation renders the following matrix:

QA =



.35 .65

.23 .77

.12 .88

.05 .95


(14)

.

In both equations 13 and 14 the rows represent the non-absorbing states in the same order

as the transition matrix. In equation 14 the columns represent non-enrollment and gradua-
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tion from left to right. Based on this information, an entering freshman has a 65% chance

of graduating with an expected time until absorption of between four and five academic

years.

Analysis of Sophomore Transfers from 2008 to 2014

Data regarding progression of sophomore transfers were provided in a format different than

the data regarding entering freshmen. The data of sophomore transfers tracked the number

of students that remained enrolled at the end of each year. At the end of the sixth year, a

student would either be graduated or not counted toward the graduation rate, because of

this, a third absorbing state was added. For this analysis, the rows of the transition matrix

represent, at time t and from top to bottom:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year,

4. enrolled at end of fourth year

5. enrolled at end of fifth year

6. not enrolled at the university

7. not counted toward graduation

8. graduated.

The final three states are assumed to be absorbing. The same order of states describes the

column states from left to right, but the column states represent the states at time t+1. The

difference between time t and t+ 1 is one academic year. Note that at the end of a student’s

fifth year, they can only transition to a non-graduated, or graduated state. This is because in

another academic year, any other status except graduated status is not counted toward the

university’s graduation rate. Below is the transition matrix for sophomore transfers:
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P =



0 .76 0 0 0 .15 0 .09

0 0 .37 0 0 .11 0 .52

0 0 0 .20 0 .16 0 .65

0 0 0 0 .20 .31 0 .49

0 0 0 0 0 0 .59 .41

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



. (15)

Because this transition matrix was expressed in canonical form, I utilized Theorem 3 to

find the expected time until absorption and found a new sophomore to have an expected

absorption time of 2 to 3 years. I also calculated the probability of absorption using Theorem

4, and the result of this calculation can be seen below:

QA =



.30 .00 .70

.19 .01 .80

.22 .02 .76

.31 .12 .57

0 .59 .41


. (16)

Thus, a new sophomore transfer is expected to have an absorption time of 2 to 3 years

at the end of their first year, and a graduation probability of 70%.

Analysis of Junior Transfers from 2014 to 2018

The data regarding junior transfers has the same formatting and states as the sophomore

transfer data. This transition matrix can be found in Appendix II.

After calculating the expected absorbing time and absorption probabilities, I determined

that a junior transfer has an expected absorption time of 1 to 2 years at the end of their
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first year, and an 80% chance of graduating. The matrix of absorption probabilities can be

seen below:

QA =



.20 .00 .80

.16 .01 .83

.22 .04 .74

0 .19 .81

0 .42 .58


. (17)
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Chapter 4: Analysis of Individual Colleges

The university that provided the freshman, sophomore transfer, and junior transfer data

houses seven different colleges. These colleges are: the College of Arts and Sciences, the

College of Business, the College of Education, the College of Fine Arts, the College of Health

Sciences, the College of Music, and the seventh college houses mostly undeclared majors.

The seventh college will be discussed later in this paper. For now, I will present the results

from the other six colleges for which I asked the question, is there any noticeable difference

in the long-term behaviors of the individual colleges? The analysis of the long-term behavior

was performed using freshman and sophomore transfer data, but not junior transfer data; I

will discuss the reason for this decision later in this paper.

Analysis of the College of Arts and Sciences

The data regarding the individual colleges was in a very similar format to the data of

sophomore and junior transfers but with an added absorbing state. The states represented

by the rows of the transition matrix at time t, from top to bottom are:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college
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7. not enrolled at the university

8. not counted toward graduation

9. graduated

The last four states are absorbing states. This same order describes the states of the columns

from left to right, except the column states are at time t + 1, where one academic year

separates t and t + 1. Because of the continuity in the structure of the data, the transition

matrix for the freshman data in the College of Arts and Sciences will be the only provided

transition matrix in this discussion, but the remaining transition matrices can be found in

Appendix II.

Freshmen Entering the College of Arts and Sciences

Freshmen entering the College of Arts and Sciences progress according to the following

transition matrix:

P



0 .72 0 0 0 .14 .14 0 0

0 0 .70 0 0 .16 .11 0 .03

0 0 0 .28 0 .04 .07 0 .61

0 0 0 0 .18 .02 .12 0 .68

0 0 0 0 0 0 0 .62 .38

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



(18)

Given this transition matrix, a freshman entering the College of Arts and Sciences has

an expected time to absorption of between 2 and 3 years from the end of the student’s first

year. Additionally, the absorption probabilities can be calculated since the transition matrix

is in canonical form. The result of this calculation can be seen below:
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QA =



.27 .27 .02 .44

.18 .19 .02 .61

.04 .10 .03 .83

.02 .12 .11 .75

0 0 .62 .38


. (19)

Sophomores Entering the College of Arts and Sciences

The individual college data for sophomore transfers had the structure as the data individual

college data for freshman. Given this, only the results of sophomore analyses will be provided

in this discussion, but all excluded transition matrices can be found in Appendix II.

For sophomores entering the College of Arts and Sciences, the expected time until ab-

sorption is between one and two academic years from the end of the student’s first academic

year. The absorption probabilities can be seen in the following matrix:

QA =



.15 .29 .00 .56

.05 .22 .00 .73

.02 .29 .02 .67

.02 .41 .09 .48

0 0 .60 .40


. (20)

Therefore, a sophomore entering the College of Arts and Sciences has a 56% chance of

graduating from the same college.

Analysis of the College of Business

Freshmen Entering the College of Business

The expected time until absorption of a freshman entering the College of Business is between

two and three years at the end of the student’s first year. The probabilities of absorption
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can be seen in the matrix below:

QA =



.24 .25 .01 .50

.17 .15 .02 .66

.04 .06 .02 .88

.03 .07 .08 .82

0 0 .51 .49


. (21)

Sophomores Entering the College of Business

The expected time until absorption of a sophomore entering the College of Business is be-

tween one and two academic years after the end of the student’s first academic year. The

probabilities of absorption can be seen in the matrix below:

QA =



.17 .24 .00 .59

.05 .13 .01 .81

.01 .11 .02 .86

.03 .18 .11 .70

0 0 .71 .29


. (22)

Analysis of the College of Education

Freshmen Entering the College of Education

The expected time until absorption of a freshman entering the College of Education is be-

tween two and three academic years from the end of the students first academic year. The

probabilities of absorption can be seen in the matrix below:
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QA =



.33 .16 0 .51

.23 .10 .01 .66

.05 .06 .01 .88

.03 .08 .04 .85

0 0 .44 .56


. (23)

Sophomores Entering the College of Education

The expected time until absorption of a sophomore entering the College of Education is

two academic years after the end of the student’s first academic year. The probabilities of

absorption can be seen in the matrix below:

QA =



.21 .26 0 .53

.07 .16 .00 .77

.06 .14 .01 .79

0 .18 .03 .79

0 0 .25 .75


. (24)

Analysis of the College of Fine Arts

Freshmen Entering the College of Fine Arts

The expected time until absorption of a freshman entering the College of Fine Arts is be-

tween two and three academic years from the end of the student’s first academic year. The

probabilities of absorption can be seen in the matrix below:
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QA =



.25 .25 0 .50

.18 .16 .01 .65

.04 .02 .02 .86

.01 .12 .05 .82

0 0 .31 .69


. (25)

Sophomores Entering the College of Fine Arts

The expected time until absorption of a sophomore entering the College of Fine Arts is two

academic years after the student’s first academic year. The probabilities of absorption can

be seen in the matrix below:

QA =



.12 .27 .01 .60

.05 .17 .01 .77

.01 .25 .03 .71

.02 .31 .13 .54

0 0 .61 .39


. (26)

Analysis of the College of Health Sciences

Freshmen Entering the College of Health Sciences

The expected time until absorption of a freshman entering the College of Health Sciences is

between two and three academic years after the student’s first academic year. The proba-

bilities of absorption can be seen in the matrix below:
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QA =



.29 .23 .01 .47

.20 .14 .01 .65

.04 .06 .02 .88

.01 .08 .06 .85

0 0 .49 .51


(27)

Sophomores Entering the College of Health Sciences

The expected time until absorption of a sophomore entering the College of Health Sciences

is between one and two academic years after the end of the student’s first academic year.

The probabilities of absorption can be seen in the matrix below:

QA =



.14 .23 .00 .63

.06 .14 .00 .80

.01 .18 .01 .80

.02 .30 .11 .57

0 0 .47 .53


. (28)

Analysis of the College of Music

Freshmen Entering the College of Music

The expected time until absorption of a freshman entering the College of Music is between

two and three academic years from the end of the student’s first academic year. The proba-

bilities of absorption can be seen in the matrix below:
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QA =



.34 .24 .03 .39

.26 .16 .04 .54

.08 .10 .06 .76

.03 .09 .13 .75

0 0 .56 .44


. (29)

Sophomores Entering the College of Music

The expected time until absorption of a sophomore entering the College of Music is two and

three years at the end of the student’s first academic year. The probabilities of absorption

can be seen below:

QA =



.32 .32 0 0

.11 .28 0 .60

.08 .24 0 .68

.11 .44 0 .45

0 0 1 0


(30)

Reasoning for Data Exclusion and Limitations

There are two data sets excluded from the analysis of the individual colleges housed within

this university. First, the aforementioned seventh college has been excluded. Second, analysis

of juniors throughout individual colleges have been excluded.

The junior transfer data set contained, by a large margin, the smallest population of any

data set. The next smallest data set was the sophomore transfer data set. In the analysis

of sophomores in the individual colleges, the smallest colleges had very few students in the

the fourth, fifth, and sixth academic years. In some cases, results indicated that sophomore

students in these years either had a 100% probability to graduate, or a 0% probability to

graduate in the next year. This is evidenced in the probabilities of absorption of sophomores
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entering the college of music. The absorption probabilities indicate that a student at the end

of their fifth academic year has a 0% chance of graduation. This expectation is unrealistic.

Because the population in the junior data set was much smaller than that of the sophomore

data set, the analysis likely would have yielded more unrealistic results. Knowing these

limitations, I did not perform an analysis of individual colleges using the junior transfer

data.

The previously mentioned seventh college–I do not identify its official name since it could

be an identifier of the university–mostly contains students of undeclared major. However,

during some of the years that the data encapsulate there were some majors within this college,

but not in others. This implied that in some years students could graduate from the seventh

college, and in other years they could not. Because of this, the results of the individual

college analysis results were impossible to interpret for the seventh college. Therefore, the

results of this analysis were excluded from this paper entirely.
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Chapter 5: Conclusions

From the analysis, I can conclude that there are differences in the long-term behaviors

of entering freshmen, sophomore transfers, and junior transfers. Contrasting equation 14 to

equation 16 and equation 17, we can see that entering freshmen have a significantly lower

probability of graduating than their sophomore and junior counterparts. We can also see that

junior transfers have the highest graduation probability of all the groups by a large margin.

Equation 14 also indicates that freshmen also have the highest probability of leaving the

university when contrasted with sophomore and junior transfers. These results can also be

seen in Table 1 and Table 2.

Table 1: Overview of Probability Results
Entering Status Graduation Probability Not Graduating Probability

Freshman 0.65 0.35
Sophomore 0.70 0.30

Junior 0.80 0.20

Table 2: Overview of Expected Time Until Absorption
Entering Status Expected Time Until Absorption (in years)

Freshman 4-5
Sophomore 2-3

Junior 1-2

Furthermore, when contrasting equation 16 and equation 17 we can see that juniors are

less likely than sophomores to leave the university. But, the probability of a junior transfer

not being counted toward the graduation rate rises at a faster rate than that of a sopho-

more transfer with each additional academic year. However, the maximum probability of a
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sophomore not being counted toward graduation is lower than that of a junior transfer. Ad-

ditionally, both junior and sophomore transfers gain probability of graduating with each year

until the end of the second year, in which graduation rates become somewhat erratic.

Within the analysis of individual colleges, we can observe that the probabilities of a

freshman changing colleges is higher than the probability of a sophomore changing college

in every case. But, in contrast, sophomore transfers are more likely to leave the university

than to change colleges, in general.

At this university, students are expected to receive a degree after their fourth year of

college courses, but a fifth year of college is not uncommon. In general, someone in their

first year is a freshman, someone in their second year is a sophomore, and someone in their

third year is a junior. Given this information, we can see that all of the groups in the overall

analysis are expected to leave after 4-5 years of college courses. These figures align with the

timeline of expected graduation, meaning that most students are not leaving the university

prior to their expected leaving time. The individual college analysis renders similar results,

but sometimes these estimates are a bit below the 4-5 year mark. Based on these changes,

the most likely reason for this is the fact that students can leave a given college, but graduate

from another one.

This leads us to a second problem with the individual college analysis. Since the data

keep track of a student’s standing at the end of an academic year, the transition matrix

shows probabilities of transitioning to a singular different state over the next academic year.

If during the next year a student transfers colleges and also graduates from the new college,

the student is considered to have graduated from the previous college from which they

transferred. This is a direct result of the data measuring the results by the end of the years,

because the next time a student in this situation is counted their status will be graduated

without the transfer ever being recognized. Thus, the transition matrices cannot encapsulate

both transitions in a single time step, and the provided graduation percentages do contain

some error.
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If I were to prescribe changes to increase the university’s graduation rate, I would recom-

mend increasing the freshman retention rate and encouraging sophomore transfers to change

majors rather than leave the university. Junior transfers seem to have great success overall

with high graduation rates within the expected time to receive a degree.
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Appendix I: Original Junior Transfer Data Set

Seen below is a screenshot of the junior transfer data as received from the university. This

particular data set was chosen as an example because it is the most concise and contains no

unique identifiers to the university.

Figure 2: Original Junior Transfer Data
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Appendix II: Transition Matrices Excluded From

Discussion

The transition matrices that were not presented in the discussion can be found in this

appendix.

Transition Matrix for Sophomores Entering the College of Arts and

Sciences

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time
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t + 1. The difference ins t and t + 1 is one academic year.

P =



0 .63 0 0 0 .12 .15 0 .10

0 0 .31 0 0 .04 .13 0 .52

0 0 0 .22 0 .02 .20 0 .56

0 0 0 0 .15 .02 .41 0 .42

0 0 0 0 0 0 0 .60 .40

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Freshmen Entering the College of Business

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .76 0 0 0 .11 .13 0 0

0 0 .74 0 0 .14 .11 0 .01

0 0 0 .28 0 .03 .04 0 .65

0 0 0 0 .15 .03 .07 0 .75

0 0 0 0 0 0 0 .51 .49

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Sophomores Entering the College of Busi-

ness

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .67 0 0 0 .13 .15 0 .05

0 0 .34 0 0 .05 .09 0 .52

0 0 0 .13 0 .01 .09 0 .71

0 0 0 0 .15 .03 .18 0 .65

0 0 0 0 0 0 0 .71 .29

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Freshmen Entering the College of Educa-

tion

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .77 0 0 0 .15 .08 0 0

0 0 .73 0 0 .19 .06 0 .02

0 0 0 .25 0 .04 .04 0 .67

0 0 0 0 .10 .02 .08 0 .80

0 0 0 0 0 0 0 .44 .56

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Sophomores Entering the College of Educa-

tion

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .68 0 0 0 .16 .15 0 .01

0 0 .40 0 0 .05 .10 0 .45

0 0 0 .13 0 .06 .12 0 .69

0 0 0 0 .14 0 .18 0 .68

0 0 0 0 0 0 0 .25 .75

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Freshmen Entering the College of Fine Arts

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .76 0 0 0 .11 .13 0 0

0 0 .74 0 0 .15 .10 0 .01

0 0 0 .31 0 .03 .05 0 .61

0 0 0 0 .18 .01 .12 0 .69

0 0 0 0 0 0 0 .31 .69

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Sophomores Entering the College of Fine

Arts

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .69 0 0 0 .09 .14 0 .07

0 0 .37 0 0 .03 .09 0 .51

0 0 0 .21 0 .01 .18 0 .59

0 0 0 0 .22 .02 .31 0 .46

0 0 0 0 0 0 0 .61 .39

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Freshmen Entering the College of Health

Sciences

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .73 0 0 0 .15 .12 0 0

0 0 .71 0 0 .17 .10 0 .02

0 0 0 .23 0 .03 .05 0 .68

0 0 0 0 .14 .02 .07 0 .77

0 0 0 0 0 0 0 .49 .51

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Sophomores Entering the College of Health

Sciences

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .57 0 0 0 .11 .15 0 .17

0 0 .26 0 0 .06 .09 0 .59

0 0 0 .11 0 0 .15 0 .74

0 0 0 0 .23 .02 .30 0 .45

0 0 0 0 0 0 0 .47 .53

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Freshmen Entering the College of Music

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .73 0 0 0 .15 .12 0 0

0 0 .69 0 0 .21 .09 0 .01

0 0 0 .47 0 .07 .05 0 .41

0 0 0 0 .23 .03 .09 0 .65

0 0 0 0 0 0 0 .56 .44

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Sophomores Entering the College of Mu-

sic

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year

4. enrolled at end of fourth year

5. enrolled at the end of fifth year

6. no longer in the given college

7. not enrolled at the university

8. not counted toward graduation

9. graduated

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .58 0 0 0 .26 .16 0 0

0 0 .52 0 0 .07 .16 0 .25

0 0 0 .36 0 .04 .08 0 .52

0 0 0 0 0 .11 .44 0 .45

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Transition Matrix for Junior Transfers

The states for this transition matrix are as follows:

1. enrolled at end of first year

2. enrolled at end of second year

3. enrolled at the end of third year,

4. enrolled at end of fourth year

5. enrolled at end of fifth year

6. not enrolled at the university

7. not counted toward graduation

8. graduated.

This order represents the row states from top to bottom, and the column states from left

to right. The rows represent the state at time t and the columns represent the states at time

t + 1. The difference ins t and t + 1 is one academic year.
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P =



0 .56 0 0 0 .11 0 .33

0 0 .26 0 0 .10 0 .64

0 0 0 .20 0 .22 0 .58

0 0 0 0 .44 0 0 .56

0 0 0 0 0 0 .43 .58

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



.
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